Муниципальное казенное учреждение «Управление народного образования»
Дальнереченского муниципального района Приморского края
Муниципальное бюджетное учреждение дополнительного образования
«Дом детского творчества с. Ракитное»
Дальнереченского муниципального района Приморского края

ЛАБОРАТОРИЯ 3D МОДЕЛИРОВАНИЯ

Дополнительная общеобразовательная общеразвивающая программа технической направленности

> Возраст обучающихся: 12-15 лет Срок реализации программы: 2 года

> > Фролова Марина Витальевна, педагог дополнительного образования

РАЗДЕЛ № 1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОГРАММЫ

1.1. Пояснительная записка

Актуальность программы

России нужны специалисты в области инженерных наук. Об этом, в частности, заявил президент страны В.В. Путин на совете по науке и образованию 07 февраля 2025 года. По его словам, необходимо увеличение доли практического обучения современным инструментам проектирования и конструирования.

А так как в наше время технологии трёхмерного моделирования используются во многих сферах человеческой деятельности, то повышается значимость технологий трёхмерной графики для школьного образования.

Обучение ПО данной программе поможет формированию y обучающихся инженерной основ грамотности, a также основных информационно-коммуникационных компетенций. Освоение технологий 3Dпрототипирования обучающимися, конструирования И склонными техническому творчеству, сокращает дистанцию от замысла до изделия, позволяет самостоятельно создавать продукты, применять полученные знания и навыки как в учебных, так и в личных целях.

В процессе обучения обучающиеся проходят путь от эскиза до готового изделия, осваивая такие этапы работы, как прототипирование, макетирование, моделирование 3D печать.

Навыки, получаемые В ходе освоения программы, ΜΟΓΥΤ обучающимися в ходе выполнения использоваться работ в других объединениях технической направленности (B первую очередь робототехники, а также судо-, авто-, авиа-моделирование), на уроках технологии в школе и при самостоятельном выполнении технических проектов, в частности индивидуального проекта при получении среднего общего образования.

Направленность программы — техническая. Данная программа предполагает формирование системного инженерного мышления обучающихся, что позволяет не только овладевать широкой областью

знаний и набором поликомпетенций, но и решать творческие, проектные задачи. Дополнительная общеобразовательная общеразвивающая программа «Лаборатория 3D моделирования разработана для обучающихся, проявляющих склонность к техническому творчеству.

Уровень освоения программы – стартовый (1-й год обучения), базовый (2-й год обучения).

Язык реализации программы – государственный язык РФ – русский.

Отличительной особенностью обучения по данной программе является создание благоприятных условий для интеллектуального и духовного воспитания личности ребенка, социально-культурного и профессионального самоопределения, развития познавательной активности и творческой самореализации обучающихся. В программу заложена работа над проектами, где обучающиеся смогут попробовать себя в роли конструктора, дизайн-менеджера.

Адресат программы. Программа рассчитана на обучающихся с. Сальское Дальнереченского муниципального района в возрасте от 12 до 15 лет, желающих заниматься техническим творчеством.

Особенности организации образовательного процесса

Дополнительная общеобразовательная общеразвивающая программа «Лаборатория 3D моделирования» реализуется в сетевой форме в МОБУ «СОШ с. Сальское» по адресу: Приморский край, Дальнереченский р-н, с. Сальское, ул. Советская, 15.

Набор группу осуществляется зачисление В через портал персонифицированного дополнительного образования https://25.pfdo.ru/app обучающегося основании заявления родителя (законного на ИЛИ представителя) обучающегося, не достигшего возраста 14 лет.

Объём и сроки реализации программы

Срок реализации программы – 2 года обучения. Общий объем – 136 часов.

Из них: 1 год обучения (стартовый уровень) — 68 часов, 2 год обучения (базовый уровень) — 68 часов.

Наполняемость – 10-12 обучающихся в группе.

1 год обучения — обучающиеся в возрасте 12-13 лет, 2 год — 14-15 лет.

Режим занятий -1 раз в неделю по 2 академических часа, продолжительность одного академического часа -40 мин.

Форма обучения – очная.

1.2. Цель и задачи программы

Цель программы — развитие инженерно-творческих способностей обучающихся МОБУ «СОШ с. Сальское» Дальнереченского МР в возрасте от 12 до 15 лет через технологии 3D моделирования.

Задачи программы

Воспитательные:

- 1. Воспитывать ответственность за начатое дело.
- 2. Воспитывать стремление к получению качественного законченного результата.
 - 3. Формировать умения самостоятельной и коллективной работы.

Развивающие:

- 1. Развивать творческую активность через индивидуальное раскрытие технических способностей каждого ребёнка.
- 2. Развивать навыки совместной работы, умения работать самостоятельно, мобилизуя необходимые ресурсы, правильно оценивая смысл и последствия своих действий.

Обучающие:

- 1. Знакомить с системами 3D моделирования и формировать представление об основных технологиях моделирования.
- 2. Учить основным приёмам и методам работы в 3D системах автоматизированного проектирования.
- 3. Обучать пользоваться САПР (системой автоматизированного проектирования) в объёме, достаточном для уверенного 3D-моделирования несложных декоративных изделий, сувениров и бытовых предметов.

1.3. Содержание программы

Учебный план 1 года обучения

No॒	Наименование разделов, тем	Кол	пичество	часов	Форма контроля/
		Всего	Теория	Практика	аттестации
1	Интерфейс системы КОМПАС- 3D. Операции построения и редактирования	7	2,5	4,5	
1.1	Введение в программу. Техника безопасности	1	0,5	0,5	Тестирование
1.2	Интерфейс системы КОМПАС-3D. Построение геометрических объектов	3	1	2	Педагогическое наблюдение, практическая работа
1.3	Редактирование в КОМПАС-3D	3	1	2	Педагогическое наблюдение
2	Создание чертежей	9	3	6	
2.1	Оформление чертежей по ЕСКД в Компас 3D. Подготовка 3D модели и чертёжного листа	3	1	2	Практическая работа
2.2	Вставка видов на чертёжный лист, произвольные виды	3	1	2	Практическая работа
2.3	Линии, разрезы и сечения	3	1	2	Практическая работа
3	Трёхмерное моделирование	30	4	26	
3.1	Управление окном. Дерево построения	3	1	2	Педагогическое наблюдение, опрос
3.2	Построение трёхмерной модели прямоугольника и окружности. Создание винта и отверстия	6	1,5	4,5	Педагогическое наблюдение, практическая работа
3.3			1,5	9,5	Опрос, практическая работа
3.4	Сечение. Создание сечения для 3D вала	6	0	6	Педагогическое наблюдение, практическая работа
3.5	Проект: Моделирование объектов по выбору	4	0	4	Защита проекта
4	Библиотеки в КОМПАС-3D	6	2	4	
4.1	Использование менеджера библиотек	3	1	2	Практическая работа
4.2	Импорт и экспорт графических документов	3	1	2	Практическая работа, опрос
5	Моделирование сборочных чертежей в КОМПАС-3D	16	1	15	
5.1	1		1	1	Практическая работа
5.2	Создание модели сборочного чертежа сварного соединения	3	0	3	Практическая работа
5.3	Сборка. Болтовое соединение	3	0	3	Практическая работа

5.4	Резьбовые соединения деталей	2	0	2	Педагогическое
					наблюдение
5.5	Спиннер. Сборка	3	0	3	Практическая работа
5.6	Проект: Создание модели	3	0	3	Проектная
	сборочного чертежа по выбору				деятельность
	Итого:	68	18	50	

Содержание учебного плана 1-го года обучения

1. Раздел: Интерфейс системы КОМПАС- 3D. Операции построения и редактирования

1.1. Тема: Введение в программу. Техника безопасности

Теория. Технике безопасности на занятиях. Пожарная безопасность и электробезопасность. Санитария. Распорядок дня. Расписание занятий. Основные разделы программы.

Практика. Тестирование.

1.2. Тема: Интерфейс системы КОМПАС-3D. Построение геометрических объектов

Теория. Компактная панель и типы инструментальных кнопок. Создание пользовательских панелей инструментов. Простейшие построения.

Практика. Настройка рабочего стола. Построение отрезков, окружностей, дуг и эллипсов.

1.3. Тема: Редактирование в КОМПАС-3D

Теория. Простейшие команды в 3D Компас.

Практика. Сдвиг и поворот, масштабирование и симметрия, копирование и деформация объектов, удаление участков кривой и преобразование в NURBS-кривую.

2. Раздел: Создание чертежей

2.1. Тема: Оформление чертежей по ЕСКД в Компас 3D. Подготовка 3D модели и чертёжного листа

Теория. Методы разработки конструкторской документации. Правила и ГОСТы. Основная надпись конструкторского чертежа по ГОСТ 2.104-2006.

Практика. Подготовка 3D модели и чертёжного листа.

2.2. Тема: Вставка видов на чертёжный лист, произвольные виды

Теория. Виды и слои. Фантомы. Панель «Ассоциативные виды».

Стандартные виды.

Практика. Выполнение чертежа втулочно-пальцевой муфты. Создание главного вида (команда «Вид с модели»), добавление вида сверху, вида слева.

2.3. Тема: Линии, разрезы и сечения

Теория. Типы линий, разрезы и сечения.

Практика. Добавление вида по стрелке и вида-разреза в чертёж втулочно-пальцевой муфты.

3. Раздел: Трёхмерное моделирование

3.1. Тема: Управление окном. Дерево построения

Теория. Дерево модели: представление в виде структуры и обычное дерево. Раздел дерева в отдельном окне. Состав Дерева модели.

Практика. Анализ дерева модели чертежа втулочно-пальцевой муфты.

3.2. Тема: Построение трёхмерной модели прямоугольника и окружности. Создание винта и отверстия

Теория. Формообразующие операции (построение деталей).

Практика. Создание болта и отверстия.

3.3. Тема: Операции: выдавливание, вращение, кинематическая операция, операция по сечениям

Теория. Выдавливание: эскиз, сформированный трёхмерный элемент, уклон внутрь и уклон наружу. Вращение: эскиз, полное вращение, вращение на угол меньше 360°. Кинематическая операция: эскиз и траектория операции, трёхмерный элемент. Операция по сечениям: набор эскизов в пространстве, сформированный трёхмерный элемент.

Практика. Моделирование тела вращения на примере вала. Создание 3D модели Корпуса.

3.4. Тема: Сечение. Создание сечения для 3D вала

Практика. Создание 3D модели вала.

3.5. Тема: Проект: Моделирование объектов по выбору

Практика. Создание чертежей деталей, выполнение 3D моделей.

4. Раздел: Библиотеки в КОМПАС-3D

4.1. Тема: Использование менеджера библиотек

Теория. Конструкторские приложения. Бесплатные библиотеки.

Библиотека «Стандартные изделия».

Практика. Построение чертежа, используя библиотеку стандартных изделий на выбор.

4.2. Тема: Импорт и экспорт графических документов

Теория. Форматы файлов КОМПАС 3D: Чертежи (*.cdw), Фрагменты (*.frw), Текстовые документы (*.kdw), Спецификации (*.spw), Сборки (*.a3d), Технологические сборки (*.t3d), Детали (*.m3d), Шаблоны (*.cdt), (*.frt), (*.kdt), (*.spt), (*.a3t), (*m3t).

Практика. Выполнение импорта и экспорта файлов, изготовленных чертежей и 3D моделей.

5. Раздел: Моделирование сборочных чертежей в КОМПАС-3D

5.1. Тема: Проектирование спецификаций

Теория. Общие принципы работы со спецификациями. Разработка спецификации к ассоциативному чертежу. Специальные возможности редактора спецификаций КОМПАС-3D.

Практика. Разработка спецификации к сборочному чертежу редуктора. Разработка спецификации для трёхмерной сборки редуктора.

5.2. Тема: Создание модели сборочного чертежа сварного соединения

Практика. Создание сборочного чертежа сварного соединения изделия. Опора и его сборка вниз.

5.3. Тема: Сборка. Болтовое соединение

Практика. Выполнение сборки болтового соединения с резьбой M20 методом сверху.

5.4. Тема: Резьбовые соединения деталей

Практика. Выполнение сборочного чертежа резьбового соединения и его сборка.

5.5. Тема: Спиннер. Сборка

Практика. Создание чертежей корпуса, четырёх подшипников, двух крышек, сопряжение между ними. Выполнение сборки спиннера.

5.6. Тема: Проект: Создание модели сборочного чертежа по выбору

Практика. Создание чертежей деталей, выполнение сборки модели.

Учебный план 2 года обучения

$N_{\underline{0}}$	Наименование разделов, тем	Количество часов			Форма контроля/
		Всего	Теория	Практика	аттестации
1	Компас 3D анимация	25	2	23	
1.1	Введение в программу 2 года обучения. Техника безопасности	2	1	1	Тестирование
1.2	Анимация сборки примитивного двигателя	4	1	3	Педагогическое наблюдение, практическая работа
1.3	Анимация сборки кривошипа	4	0	4	Педагогическое наблюдение
1.4	Сборка и анимация домкрата	4	0	4	Практическая работа
1.5	Проект: Создание анимации механизма по выбору	7	0	7	Проектная деятельность
2	3D печать	28	10	18	
2.1	Сферы применения 3D-печати	2	2	0	Опрос
2.2	Типы принтеров и компании. Технологии 3D-печати	4	1	3	Педагогическое наблюдение, опрос
2.3	Настройка и единицы измерения. Параметр Scale	4	1	3	Практическая работа
2.4	Основная проверка модели (non-manifold)	2	1	1	Практическая работа
2.5	Толщина (Thikness). Острые рёбра (Edgesharp)	2	1	1	Практическая работа
2.6	Свес (Overhang). Автоматическое исправление	2	1	1	Практическая работа
2.7	Информация о модели и её размер. Полые модели	2	1	1	Практическая работа
2.8	Модель с текстурой (texturepaint). Модель с внешней текстурой	2	1	1	Практическая работа
2.9	Факторы, влияющие на точность	2	1	1	Практическая работа
2.10	Проект: Печать модели по выбору	6	0	6	Презентация проектной работы
3	3D-сканирование	15	5	10	
3.1	Что такое 3D сканер и как он работает. История появления	1	1	0	Опрос
3.2	Методы трёхмерного сканирования	2	1	1	Практическая работа
3.3	Технологии трёхмерного сканирования	2	1	1	Педагогическое наблюдение, опрос
3.4	Программное обеспечение для 3D сканера. Обзор 3D-сканера Sense	4	1	3	Практическая работа

3.5	Обработка файла после	2	1	1	Практическая работа
	сканирования				
3.6	Проект: Сканирование объекта	4	0	4	Проектная
	по выбору и обработка файла				деятельность
	Итого:	68	19	49	

Содержание учебного плана 2-го года обучения

1. Раздел: Компас 3D анимация

1.1. Тема: Введение в программу 2 года обучения. Техника безопасности

Теория. Технике безопасности на занятиях. Пожарная безопасность и электробезопасность. Санитария. Цель, задачи основные разделы программы.

Практика. Тестирование.

1.2. Тема: Анимация сборки примитивного двигателя

Теория. Библиотека анимации. Имитация движения механизмов, устройств и приборов, смоделированных в системе КОМПАС-3D. Имитирование процессов сборки-разборки изделий. Создание видеороликов, для презентаций.

Практика. Создание анимации сборки простейшего механизма.

1.3. Тема: Анимация сборки кривошипа

Практика. Используя библиотеку анимации создание сборки кривошипа.

1.4. Тема: Сборка и анимация домкрата

Практика. Используя библиотеку анимации создание сборки домкрата.

1.5. Тема: Проект: Создание анимации механизма по выбору

Практика. Создание чертежей деталей, выполнение сборки модели, создание анимации.

2. Раздел: 3D печать

2.1. Тема: Сферы применения 3D-печати

Теория. Доступность 3D печати в архитектуре, строительстве, мелкосерийном производстве, медицине, образовании, ювелирном деле, полиграфии, изготовлении рекламной и сувенирной продукции. Основные сферы применения 3D печати в наши дни.

2.2. Тема: Типы принтеров и компании. Технологии 3D-печати

Теория. Принципы, возможности, расходные материалы. Стереолитография (Stereo Lithography Apparatus, SLA). Выборочное лазерное спекание (SelectiveLaserSintering, SLS). Метод многоструйного моделирования (Multi Jet Modeling, MJM)

Практика. Подготовка модели к печати (команда «Проверка модели» - «Проверка на печать». Поиск и устранение острых кромок. Проверка на самопересечения. Устранение несплошностей).

2.3. Тема: Настройка Blender и единицы измерения. Параметр Scale

Теория. Расположение окон, переключение и сохранение единиц измерения. Настройки проекта и пользовательские настройки. Значение Screen для параметра Scale.

Практика. Подготовка модели к печати (добавление опор, создание уклонов, добавление радиусов скругления).

2.4. Тема: Основная проверка модели (non-manifold)

Теория. Неманифолдная (не закрытая/не герметичная) геометрия 3D объекта. Non- manifold-геометрия.

Практика. Настройка параметров печати (установка толщины стенок, настройка высоты слоя, определение процента заполнения, ручная корректировка опор, настройка угла открепления).

2.5. Тема: Толщина (Thikness). Острые рёбра (Edgesharp)

Теория. Модификатор EdgeSplit, Острые рёбра (FlatShading), загаданный угол (SplitAngle), острые (MarkSharp). Сглаженные рёбра (Smooth), острые (Flat). Режимы: EdgeAngle и SharpEdges.

Практика. Настройка сглаживания в режиме редактирования объекта, работа с острыми рёбрами (инструмент MarkSharp), применение модификатора толщины, настройка углов.

2.6. Tema: Свес (Overhang). Автоматическое исправление

Теория. Быстрое автоматическое исправление STL файлов для 3D-печати. Загрузка STL файла и его предварительный анализ. Экспорт исправленного нового файла STL. Свес (Overhang).

Практика. Сохранение версии для печати, визуальный осмотр модели, проверка ориентации, проверка качества поверхности, использование дополнительных инструментов («Масса и центр масс», «Проверка на прочность», «Проверка на жёсткость»).

2.7. Тема: Информация о модели и её размер. Полые модели

Теория. Печать точной модели. Усадка и диаметр экструзии расплава, диаметр экструзии. Заполнение детали при 3D печати.

Практика. Настройка параметров печати для достижения максимальной точности: установка коэффициента компенсации усадки в направлениях X, Y и Z, выбор оптимального диаметра сопла (меньший диаметр для большей точности).

2.8. Тема: Модель с текстурой (texturepaint). Модель с внешней текстурой

Теория. Экспорт моделей с правильными габаритами в формат STL, а также в формат VRML с текстурами.

Практика. Создание и экспорт текстурированной модели: подготовка базовой модели с корректными размерами, нанесение текстур через инструмент Texture Paint, настройка UV-развёртки, проверка корректности отображения текстур в режиме рендера, экспорт модели в формат STL для 3D-печати с сохранением габаритов, экспорт модели в формат VRML с привязкой текстур, проверка экспортированных файлов на корректность отображения текстур и размеров в сторонних программах, исправление возможных искажений и артефактов при экспорте.

2.9. Тема: Факторы, влияющие на точность

Теория. Точность позиционирования, разрешающая способность, температура сопла, температура стола, калибровка.

Практика. Регулировка температуры сопла для правильной вязкости материала, настройка толщины слоя с учётом диаметра сопла, контроль температуры в камере печати для минимизации термического напряжения.

2.10. Тема: Проект: Печать модели по выбору

Практика. Выбор моделей для печати на 3D-принтере из выполненных

в течение года, подготовка модели к печати, печать модели.

3. Раздел: 3D-сканирование

3.1. Тема: Что такое 3D сканер и как он работает. История появления

Теория. История. Принцип работы 3D сканера. Бесконтактные 3D сканеры.

3.2. Тема: Методы трёхмерного сканирования

Теория. Контактная (контактирует с объектом). Бесконтактная.

Практика. Освоение различных методов 3D-сканирования: настройка и работа с контактным сканером для небольших объектов, калибровка лазерного сканера для средних объектов, обработка полученных данных с учётом особенностей поверхности (применение матирующего спрея для глянцевых материалов).

3.3. Тема: Технологии трёхмерного сканирования

Теория. Технологии 3D сканирования. Активный принцип излучения. Пассивный принцип излучения. Устройство и принцип работы 3D сканера по системе бесконтактного пассивного сканирования.

Практика. Работа с труднодоступными участками объекта, использование эндоскопических устройств для сканирования закрытых зон, проверка качества сканирования в разных режимах, объединение данных с нескольких сканирований в единый файл, тестирование различных методов на разных типах поверхностей.

3.4. Тема: Программное обеспечение для 3D сканера. Обзор 3Dсканера Sense

Teopuя. ПО 3D systems Sense. Особенности и параметры 3D сканера SENSE. Панель инструментов сканирования (Scan).

Практика. Работа с программным обеспечением 3D Systems Sense: настройка параметров сканирования (разрешение, точность, область захвата), калибровка сканера перед началом работы, создание и сохранение проектов сканирования, управление параметрами освещения в программе, выполнение последовательных сканирований объекта, объединение отдельных сканов в единый 3D-проект.

3.5. Тема: Обработка файла после сканирования

Теория. Инструменты редактирования. Настройки редактирования.

Практика. Применение инструментов постобработки (удаление шумов, сглаживание поверхностей), экспорт готовых моделей для 3D-печати (локальной или через облако), настройка параметров сохранения файлов для оптимального качества и размера, проверка совместимости с различными 3D-принтерами, документирование процесса сканирования и настроек для последующего использования.

3.6. Тема: Проект: Сканирование объекта по выбору и обработка файла

Практика. Выбор модели для сканирования, выполнение сканирования, подготовка файла для печати.

1.4. Планируемые результаты

Личностные результаты

У обучающегося будут сформированы:

- ответственность за создаваемый продукт;
- упорство в достижении желаемых результатов;
- точность и внимание к деталям, понимание ценности доброжелательных и конструктивных отношений в коллективе;
- умения работать индивидуально, в малой группе и участвовать в коллективном проекте;
 - личная ответственность за результаты коллективного проекта;
- навыки доброжелательных и конструктивных отношений в коллективе.

Метапредметные:

Обучающийся будет уметь:

- самостоятельно и инициативно ставить задачи, переносить знания, навыки и умения из одной области в другую.

У обучающего будут сформированы:

- стремлении к новым поискам решения задач.
- умения, которые помогают эффективно взаимодействовать с другими

людьми для достижения общих целей

- способность проявлять инициативу, принимать решения и выполнять задачи без постоянного надзора или руководства со стороны других.

Предметные результаты

Обучающийся будет знать:

- основы технического черчения и работы в системе трёхмерного моделирования КОМПАС-3D;
- основы технологии быстрого прототипирования и принципы работы различных технических средств;

основные приёмы создания и редактирования чертежа с помощью инструментов 3D среды;

- элементы технологии проектирования в 3D системах.

Обучающийся будет уметь:

- работать с технической документацией;
- применять полученные знания и умения при реализации исследовательских и творческих проектов;
- работать в среде 3D моделирования используя основные приёмы и технологии при выполнении проектов трехмерного моделирования.

РАЗДЕЛ № 2. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ 2.1. Условия реализации программы

Материально-техническое обеспечение

Для проведения учебного процесса необходимы:

- компьютерный класс с персональными компьютерами по числу обучающихся;
 - выход в Интернет;
 - проектор и экран (предпочтительно интерактивная доска).
 - принтер цветной.

Минимальные требования к компьютерам:

- процессор не хуже Intel® Core i5 или эквивалентный AMD;
- не менее 4 Гб оперативной памяти (рекомендуется 8 Гб или более);
- разрешение монитора 1024x768 (рекомендуется 1280x800),

видеокарта с поддержкой OpenGL, аппаратного ускорения и 16-разрядных цветов, 256 Мб видеопамяти;

- не менее 50 Гб свободного пространства на жёстком диске для установки САПР и другого ПО.

Оборудование для занятий по 3D моделированию и прототипированию:

- 3D-принтер (1-3 шт.);
- станки с ЧПУ: лазерный для резки листовых материалов, фрезерный;
- ручной инструмент (надфили, отвёртки, кусачки, пассатижи и пр.);
- шкафы или стеллажи для хранения детских работ.

Программное обеспечение:

- операционная система Windows, не ниже Windows 7, 64-bit;
- пакет программ Creo Elements/Pro Schools Edition и Компас 3D (с официальной учебной лицензией);
- ПО для управления 3D-принтером (открытое ПО Repetier/Slicer или его эквивалент, поставляемый с конкретной моделью 3D-принтера);
- при наличии станка для лазерной резки, соответствующая управляющая программа (например, LaserWorks);
 - сетевое дисковое пространство для хранения работ обучающихся.

Учебно-методическое и информационное обеспечение:

- специализированная литература по 3D моделированию, подборка журналов;
 - наборы технической документации к применяемому оборудованию;
 - образцы моделей и систем, выполненные обучающимися и педагогом;
 - плакаты, фото и видеоматериалы;
- учебно-методические пособия для педагога и обучающихся, включающие дидактический, информационный, справочный материалы на различных носителях, компьютерное и видео оборудование.

Интернет-источники:

1. 3D-моделирование: виды, принципы, инструменты. [Электронный ресурс] URL: https://practicum.yandex.ru/blog/3d-modelirovanie-v-dizayne/.

- 2. 3D-моделирование: виды трёхмерных моделей. [Электронный ресурс] URL: https://media.contented.ru/glossary/3d-modelirovanie/.
- 3. Компас 3D: обучающие материалы. [Электронный ресурс] URL: http://kompas.ru/publications/.
- 4. Библиотека бесплатных текстур. [Электронный ресурс] URL: https://ru.freepik.com/textures (дата обращения: 31.05.2024).
- 5. *Мурачёва И. В.* Компас для начинающих: метод. указания. [Электронный ресурс] URL: https://goo.su/mVSqou.
- 6. Обучающая документация по Blender. [Электронный ресурс] URL: https://docs.blender.org/manual/ru/latest.
- 7. Репозиторий 3D-моделей. [Электронный ресурс] URL: https://free3d.com.
- 8. Самоучитель КОМПАС-3D. [Электронный ресурс] URL: https://www.youtube.com/watch?v=m4PvmjvfKSw.
- 9. Учебные материалы ACKOH. [Электронный ресурс] URL: https://edu.ascon.ru/main/library/study_materials/.

Нормативно-правовая база

Программа разработана в соответствии с нормативно-правовыми документами, регулирующими сферу дополнительного образования детей и с учётом ряда методических рекомендаций:

- Федеральный закон Российской Федерации от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- Концепция развития дополнительного образования детей (утверждена распоряжением Правительства РФ от 31.03.2022 г. № 678-р);
- Приказ Министерства просвещения Российской Федерации от 27.07.2022 № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Методические рекомендации по составлению дополнительных общеобразовательных общеразвивающих программ, утверждённых приказом

Министерства образования Приморского края от 31 марта 2022 года № 23-а330.

2.2. Формы аттестации и оценочные материалы

Система отслеживания, контроля и оценки результатов процесса обучения по данной программе имеет три основных элемента:

- входной контроль определение начального уровня знаний, умений и навыков обучающихся;
 - текущий контроль в течение учебного года;
 - промежуточная аттестация в декабре и мае учебного года.

Входной контроль проводится с целью выявления начального уровня образовательных возможностей обучающихся и сформированности компетенций по направлению данной программы. Входной контроль проводится в форме тестирования.

Текущий контроль осуществляется на занятиях в течение всего учебного года с целью оценки уровня и качества освоения тем/разделов программы.

Форма текущего контроля – педагогическое наблюдение, практическая работа, опрос.

Промежуточная аттестация — оценка уровня и качества освоения обучающимися разделов или ключевых тем программы, проводится в декабре (I полугодие) и мае (II полугодие) текущего учебного года.

Формы промежуточной аттестации:

- І полугодие: практическая работа;
- II полугодие: проектная деятельность.

Формы контроля: тестирование, опрос, педагогическое наблюдение, практическая работа, проектная деятельность.

Тестирование — проводится в начале обучения по программе для выявления у обучающихся начальных знаний.

Onpoc – устная вопросительно-ответная форма контроля, позволяющая определить уровень владения теоретическими знаниями о 3D моделировании.

Педагогическое наблюдение – позволяет получить достаточно полные данные об обучающемся: и уровень его знаний, умений по предмету, и

отношение к обучению, степень его познавательной активности, сознательности, и умение мыслить, решать самостоятельно различного рода задачи.

Практическая работа — это один из видов активной самостоятельной работы обучающихся для закрепления теоретический знаний и усовершенствования навыков практической деятельности.

Проектная деятельность — форма контроля, которая проводится с целью определения уровня усвоения содержания образовательной программы, степени подготовленности к самостоятельной работе, выявления наиболее способных и талантливых детей.

Возможные формы фиксации результатов:

- Анкета для родителей «Отношение родительской общественности к качеству образовательных услуг и степень удовлетворённости образовательным процессом в группе»;
- Анкета для обучающихся «Изучение интереса к занятиям у обучающихся группы»;
- Карта учёта творческих достижений обучающихся по итогам участия в конкурсах, соревнованиях, выставках;
 - бланки тестовых заданий по темам программы.

Оценка результатов

По итогам составляется таблица отслеживания образовательных результатов, в которой обучающиеся по каждой теме выходят на следующие уровни шкалы оценки:

- высокий результат полное освоение содержания;
- средний базовый уровень;
- низкий освоение материала на минимально допустимом уровне.

Таблица мониторинга образовательных результатов

		Уровенн	ь развития умений и н	авыков
		Уровень владения		Уровень навыков
No	ФИО	терминологией и	Уровень навыков	создания
710	обучающегося	теоретическими	работы по	простейших
		знаниями по	инструкции	программ
		разделам программы		(алгоритмов)

	Окт.	Дек.	Май	Окт.	Дек.	Май	Окт.	Дек.	Май
1									
2									
3									

На первом году обучения по каждому разделу программы прогресс обучающихся отслеживается по выполнению ими учебных заданий, участию во внутренних, районных, городских конкурсах, выполнению несложных творческих проектов.

На втором году обучения обучающиеся, которые показывают устойчивый интерес к изучаемой компетенции и успешно осваивают материал могут принимать участие в соревнованиях различного уровня.

2.3. Методические материалы

Формы организации занятий: в ходе образовательного процесса применяются различные формы организации деятельности обучающихся и методы обучения. По каждому разделу на начальном этапе обучения преобладают групповые и индивидуально-групповые занятия, далее большая часть учебного времени выделяется на выполнение индивидуальных творческих проектов обучающихся.

Форма проведения занятий: аудиторные и внеаудиторные, с использованием электронного обучения и дистанционных образовательных технологий.

Занятия могут проводиться на высоком уровне сложности, но включать в себя вопросы, доступные и интересные всем обучающимся.

На занятиях предполагается использовать наглядный материал, возможности новых информационных технологий и технических средств обучения.

Форма обучения — очная, допускается сочетание различных форм получения образования и форм обучения.

Дидактические материалы – раздаточные материалы, задания, упражнения, образцы изделий.

2.4. Календарный учебный график

Этапы образовательного процесса	1 год	2 год
---------------------------------	-------	-------

Продолжительность учебного года,	34	34
неделя		
Количество учебных дней	34	34

Продолжительность	Продолжительность 1 полугодие (01.10.2025 - 28.12.2025
учебных периодов	учебных периодов 2 полугодие		09.01.2026 - 31.05.2026
Возраст детей	і́, лет	12-13	14-15
Продолжительность	занятия, час	2	2
Режим заня	R ИТ	1 раз/нед	1 раз/нед
Годовая учебная на	грузка, час	68	68

2.5. Рабочая программа воспитания «Инженерные традиции России» Пояснительная записка

Актуальность программы

В современных условиях развития технологического общества особую значимость приобретает инженерное образование и воспитание будущих специалистов технического профиля. Программа направлена на формирование у обучающихся инженерного мышления, развитие творческих способностей и интереса к техническим специальностям через знакомство с достижениями российской науки и техники.

Особенностью программы является интеграция исторического и технического компонентов, что позволяет обучающимся не только развивать практические навыки, но и осознавать вклад российских инженеров в мировую науку. Программа построена на принципах проектной деятельности и личностно-ориентированного подхода.

Цель программы – развитие инженерных и творческих способностей обучающихся МОБУ «СОШ с. Сальское» Дальнереченского МР в возрасте от 12 до 15 лет через знакомство с достижениями российской технической мысли и участие в практических проектах.

Задачи:

- 1. Формировать интерес к инженерным специальностям.
- 2. Развивать навыки проектной деятельности.
- 3. Воспитывать патриотизм через знакомство с достижениями соотечественников.
 - 4. Развивать техническое мышление и креативность.
 - 5. Формировать командное взаимодействие.

Календарный план воспитательной работы

No	Мероприятия	Объем	Временные границы
1	Великие русские изобретатели»	2	октябрь
2	Энергия будущего	2	ноябрь
3	Военная техника России»	2	декабрь
4	Будущее российской инженерии	2	февраль
5	Цифровая Россия	2	март
6	Космический челлендж	2	апрель
7	Техника Великой Победы	2	май

Содержание плана воспитательной работы

1. Великие русские изобретатели

Формат. Создание интерактивного стенда с моделями изобретений российских инженеров.

Практическая часть. Сборка действующих моделей телеграфа, паровой машины, арифмометра.

Результат. Выставка моделей с QR-кодами, содержащими информацию об изобретателях.

2. Энергия будущего

Формат. Разработка альтернативных источников энергии.

Практическая часть. Создание моделей ветрогенераторов, солнечных батарей, гидротурбин.

Результат. Презентация проектов «Умное энергоснабжение дома».

3. Военная техника России

Формат. Моделирование военной техники и инженерных сооружений.

Практическая часть. Сборка моделей танков, самолётов, создание фортификационных сооружений.

Результат. Демонстрация моделей с историческими справками, проведение мини-соревнований.

4. Будущее российской инженерии

Формат. Фестиваль технических проектов и изобретений.

Практическая часть. Презентация собственных разработок,

демонстрация прототипов, защита инновационных идей.

Результат. Выставка достижений, награждение лучших изобретателей, создание каталога проектов.

5. Цифровая Россия

Формат. Обзор современных проектов в области информационных технологий.

Практическая часть. Разработка мобильных приложений, создание веб-сайтов, программирование роботов.

Результат. Демонстрация цифровых проектов, конкурс на лучший ІТпродукт, создание портфолио работ.

6. Космический челлендж

Формат. Создание моделей космических аппаратов и проведение испытаний.

Практическая часть. Сборка и запуск моделей ракет, создание орбитальных станций из конструктора.

Результат. Конкурс на лучшую модель космического аппарата, видеопрезентация проектов.

7. Техника Великой Победы

Формат. Создание моделей военной техники времён Великой Отечественной войны.

Практическая часть. Сборка и демонстрация моделей самолётов, танков, артиллерии.

Результат. Выставка «Техника Победы», проведение экскурсии для младших школьников.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. *Большаков В. П., Чагина А. В.* 3D-моделирование в КОМПАС-3D версий V17 и выше. СПб.: Петер, 2021.
- 2. *Копосов Д. Г.* Технология. 3D-моделирование и прототипирование. М.: Просвещение, 2022.
 - 3. Назаров А. В., Назарова О. В. Компьютерная графика. Практикум.

Учебное пособие. М.: Лань, 2024.

4. *Серова М. Н.* Учебник-самоучитель по трёхмерной графике в Blender 3D. Моделирование, дизайн, анимация, спецэффекты. М.: Солон-Пресс, 2021.